EFFECT OF FREE CONVECTION ON THE INSTABILITY
OF A PLANE CRYSTALLIZATION FRONT
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The article considers the problem of free convection under conditions of phasetransition. The
method of small perturbations is used to study the stability of the erystallization front. Crit-
ical values of the parameters and calculations of the region of instability are given.

1. Statement of Problem. Let us consider a system consisting of a liquid and a solid phase. In an un-
perturbed state, the liquid phase occupies the region 0 <z <, and the solid phase the region <z <H. The
plane z=1is the phase transition interface and has a constant temperature, equal to the melting point T,.

In the plane z= 0, the temperature T is given,

It follows from the thermal conductivity equation that in an equilibrium state for the liquid phase
T/ dz = (T, — To)/ 1 = B = const 1.1)

For the solid phase, taking account of (1.1) and of the condition of the equality of the heat fluxes at the
phase interface, we obtain the result that in the equilibrium state

dTy/ dz = o}, o =u/xn, 1.2)

where T and Ty are the temperatures of the liquid and solid phases; w and w, are the thermal conductivity
coefficients.

Let the quantities characterizing the state under consideration, including the crystallization front, un-
dergo small perturbations, The equations of the perturbed state for the solid and liquid phases can be line-
arized and written in dimensionless form. If, as characteristic values of the velocity, the time, the length,
and the temperature, we take, respectively, x,/1, 1*/v, 1, Ty-T,, then the Prandtl number Pr and Ray-
leigh number Ra are

Pr=vw/ %o» Ra = ga, (Ty — T )P/ %ev

Here p is the kinematic viscosity; x, is the coefficient of thermal diffusivity in the liquid phase; g is the ac-
celeration due to gravity; and g is the coefficient of volumetric expansion of the liquid phase.

In view of the homogeneity of the problem with respect to the horizontal coordinates x and y and the
time t, the solution of the system of equations of the perturbed state may be sought in the wave form

¢ = @ () expi (mE + nn — o7)
Here ¢ is any one of the dimensionless characteristics of the perturbed flow; £=x/1, n=y/l, ¢=z/1, r=tw/1%

After transformations, the system of equations describing the perturbed state in the liquid phase can
be reduced {1] to a single equation with respect to the amplitude of the temperature perturbation @
)L K+ io) (S —k +Prio)® +kRa® =0 a-3)
() = ) P-4 2000 =
(8 = m? + n%)
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In this case, the amplitudes of the velocity perturbations U, V, W are expressed in terms of the per-
turbation of the temperature in the following manner:

W)= — k2 +Pum)@ mU +-nV =i p

- (@ T (L.4)

The equation for the amplitude of the temperature perturbation in the solid phase, @, has the form
(dcz B+Prgtin)8, =0, g¢=x%/% (1.5)

where y; is the coefficient of thermal diffusivity in the solid phase,

We write the boundary conditions which must be satisfied by the amplitude of the perturbations. The
surface z=0 is assumed to be rigid with a given temperature T therefore, the perturbations of the temper-
ature and the velocity revert to zero at this surface. Taking account of (1.4) we will have

W= ;_6_%=i=(i—k +Prio)0=0 a [=0 (1.6)

At the upper boundary of the solid phase we shall, in what follows, consider two forms of boundary
conditions:
a) the condition of constancy of the temperature
0,=0 at {=a=H/I 1.7)
b) the condition of constancy of the heat flux
d8,/df =0 a {=¢e (1.8)

Let us consider the conditions at the phase transition interface. Let the equation of the perturbed phase-
transition surface have the form

¢ =1 4+ Zexpi (mE -+ nq — o71) (1.9)

" Since the temperature at the phase interface remains constant, equal to the melting temperature, the
perturbations of the temperature in the liquid and solid phases must revert to zero at the surface (1.9). De-
composing the temperature of the perturbed state in the neighborhood ¢ =1 into a Taylor series, we find

0@=20 =02 a =1 .10)

The condition for adhesion requires the reversion to zero of the tangential component of the velocity
at the surface (1.9). Therefore

dwW

T dg(dczk +an)e =0 a =1 1.11)

At the perturbed-phase transition surface, the laws of conservation of the flows of mass and energy
must also be satisfied [2]:
Ty aT
-Po (Dn —Uy) = ple ”l'_a'l— Uy = pokD
where Dy, is the normal velocity of the phase-transition surface; A is the specific heat of fusion; py and py

are the densities of the liquid and solid phases at the melting temperature; and Ty and T' are perturbations
of the temperature,

In dimensionless form, for the amplitude of the characteristic curve of the perturbed state, taking ac-
count of (1.9), these conditions are written in the following manner:

W= —(g—F+Prioc)6=—iorZ (r="a") & t=1 (1.12)
. A
L= — R (Repptis o p=1 (1.13)

Thus, the investigation of the stability of the plane phase transition surface is brought down to the prob-
lem of the eigenvalues for Eqs. (1.3) and (1.5), with the boundary conditions (1.6)-(1.8) and (1.10)-(1.13).
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2. Proof of the Real Nature of the Eigenvalues. Equation (1.3) can be written in the form of a system
of two equations

K Ra® = (dcz k2+zw)(d—§2—k )W 2.1)

W= — (d—gz—kz—i-imPr)@
To prove the real nature of the eigenvalues, we use the method of Pellow and Southwell [1]. We multiply
the first equation of (2.1) by W, and the second by @, and then integrate between the limits from 0 to 1. The
bar above the symbol denotes complex-conjugate quantities. Using boundary conditions (1.6) and (1.11), we
obtain
oo -
) W8dL = — 6" (1) 8 (1) -+ (/2 + k) — io Pr J,? @.2)

0

1 .
k2 Ra j OWdL =G )W (1) + 1,2 + 26212 4 kB * — io (1,2 + k2 2)
0
Here

1 1
G_Tcz--kzw 122=S|W"|2dg, 112—_—S|W’|2dc
0 [}

1 1 1
Ig={|wpea, J2={le'pa, J2=(|epd
0 0 0

Analogously, multiplying Eq. (1.5) by @-)1 and integrating between the limits from 1 to a, using (1.7),
(1.8), and (1.10), we obtain

8/ (1) Z = —(— Ty = ¥yt + log PrJy ) @.3)

where Jy2, 3,2 are integrals, analogous to Jy? and J;2. Substituting (2.3) into the heat-balance equation, we
can determine the value of @Y at ¢ =1, which is then substituted into the first of the relationships (2.2). The
value of @ at ¢=1 can be found using (1.10).

Using the dimensionless equations of the perturbed state and the second of the equalities (1.4), for the
amplitude of the perturbation of the pressure P we obtain

P(1) = iok™2W' (1) 4 Prk™2G" (1) (2.4)
From boundary condition (1.11) it follows that -
wW{1)=0

The amplitude of the perturbation of the pressure at the surface may be evaluated as the perturbation
of the hydrostatic pressure, due to the replacement of a liquid element by a solid element

P (1) &~ —rFr2Z, Fr? = X2/ gl®
whence .
rk z

)=~ (2.5)

From condition (1.12)
W)= iorZ (2.6)

Substituting (2.5) and (2.6) into the second equation of (2.2), and noting that the left- and right-hand
parts of the first and second equations of (2.2), with an accuracy up to the factor k?Ra, are complex-conju-
gate, we obtain
0| Z P+ M?— ioN? = — kzl’ia[%(— K* —iog™ PrJ,0?) —

—@R|ZP—L* — ioPrJ

~ Pr Fr‘fx 2.7)
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Here
M2 =242k 2+ kP NP =12 4 k3
K? = [0 4 E0,2, LR = J® 4 BB E
We set s=syp+isj=—iw and equate the real and imaginary parts in (2.7)
[N? + K*Pr'Fr2? | Z|® + k*Ra (0™ + R Z|* + J2)ls; = 0
[N? — KPrFr—2 | Z|? — I?Ra (%0 % + R | Z|? + J9)ls, = k*Ra (L? + 0~2K?%) — M2 (2.8)
An unstable state corresponds to sy.>0, and a stable state to sy <0.

The expression in square brackets in the first equation of (2.8) cannot revert to zero in the case when
Ra>0.

Therefore, s;=0 (wp=0); s is a real value, and the transition from a stable state to an unstable state
takes place with s=0 or ¢=0.

3, Determination of the Critical Rayleigh Numbers and of the Eigenvalues. The value of the param-
eter R for crystalline solids is usually very large. It follows from the boundary condition (1.13) that the
eigenvalue ¢ is small; in the contrary case there would be very large temperature gradients. In view of this,
we shall seek the solution of Eqgs. (1.8), (1.5) with the boundary conditions (1.6)-(1.13), using series in terms
of a small parameter:

® =0y + 08, +..., 8, =0, + by +... 3.1)

In this case, in the boundary condition (1.13) we retain the term with the product Rw, in view of the
large value of the parameter R. This permits determining the eigenvalue ¢, even in the zero approximation.
The critical value of the Rayleigh number corresponds to ¢ =0; therefore, the selected method of approxi-
mate analysis alsc permits determining the critical Rayleigh number.

For the zero approximation, we have the following system of equations:
(@ d2 — kP8, + i*RaB, = 0, (d®/dE — k%O = 0 ' (3.2)

The values of @; and @y must satisfy the boundary conditions (in what follows, for simplicity we omit
the subscript 0)

e:‘fiig=di§(éi;—m)®=o at [=0 (3.3)
0=2, B,=0Z, dO/d2=kZ a [=1 8.4)
di;(%_kZ)(a:o, a%%i_{%=_imﬂz
6,=0 at {=a (3.5)
or
dd,/df =0 (3.6)

From the second equation of (3.2) and the boundary conditions for @, with ¢ =a, for cases a) and b), re-
spectively, we obtain

_Z shk(a—1D g7
O =5 wra=1) (3.7)
or
9," (1) = —kZo cthk (2 — 1) (3.8)
and
@ — 2 cthka—0
1775 Tehk(a—1) (3.9)
in which case
8, (1) = — kZo"lthk (¢ — 1) (3.10)
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Fig. 1 : Fig. 2
Substituting (3.8) and (3.10) into the last boundary condition of (3.4),
51 we obtain
sk /’,,/’ 0 (1) = iwZR — kZethk (a — 1) 3.11)
, L~ ®' (1) = iwZR — kZthk (a — 1) (8.12)
Q*\\\‘,i{_ ' The general solution of the first equation of (3.2) has the form
Al iy *
\MZ\R 0 = 1Mt + aye M - agert + greME |- ggeMt - ageE 3.13)
K1
" 16 a a Here A; (i=1, 2, 8) are the roots of the characteristic equation
Fig. 3 (A* — k%3 + k*Ra = 0 (5.14)

M=V —a, hg=VE+Y2(1+iV3, a=1 Ra

Substituting (3.13), (3.14) into boundary conditions (3.3), (3.4), and (3.11) or (3.12), we obtain a system
of equations for determining the six arbitrary coefficients and the amplitude of the shift in the crystalliza-
tion front Z. Since the system of equations obtained is found to be homogeneous, its determinant should re-
vert to zero. We obtain linear equations for determining the frequency ¢ in cases a) and b), respectively:

. 1 B 3.15
o= [kenk(@—1)+ 3| (8.15)
. 1 B
Lm=—H—[kthk(a——1)+-71—] (3.16)
A and B are the minors of the determinant; A=¢ (1), B=¢' (1), where
1 1 1 1 1 1
,? z,? 2 z,? T2 gt
Ayz,? — Ay® Aoy? — Ayz,? Age® — Agzg? (3.17)
E) =| eME oMt eME pred M ’
x12e)\, z12e—)q xzzexz xzzrh $32B)" Is‘ze-m,
Mz 2em  — Az leM Applete — Agmple™ Agzgels  — hyzglets
Z2 = M2 — k2
The determinant (3.17) can be put in the following form:
o M2y — Mg ®Dy Age Mz 205 — Agzs® D,
P = Tz 2,29 (WS — MaSy) Mgy 21%75" (S5 — AeSy) (©.18)

2
Aihozy?2,%Co) Agp Mhgz,224°Cay

where

Ay = -7312‘“1!2:1 + 22y + W, Ap = 2,°25°Cs — 2%25%°C3
Ag = 2,%25% (AyS5 — ASp) + 2:22,% (AaSy — AySy) + z5%x,® (MSy — A3Ss)

8y =shhy, C;=chhy, Ciyy=Ci—Cj Siy=8—28;
O;;=0,— 0, ¥y =V, — ¥,

shh; for the minor ‘ A, ch); for the minor A
= Ay chA; for the miner B, ™ 1Ay shA, for the minor B
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Substituting the functions ®; and ¥; and expanding the determinant (3.18), we find
A = 4803 [AAySs25® (1 — C1C,) + MAsSez? (1 — C1Cs) 4 AhsSyz 2 (1 — C,C5)] {3.19)
B = 24032 (Cia® + Cozy® + Cats®) Ahshs + SiSp (A2 + A2) Cohyzg? +
+ 8183 (M* + Ag%) Cohozs® + 8,85 (A + Ag%) Cigy?]
In the transformation of (3.18) into (3.19), the properties of the roots of Eq. (3.14) were used.
The quantities x,* and %42, A, and Ag, C, and Cs, S, and S are complex-conjugate. The root A; is real
at k= > 0 and purely imaginary at k%= <0, Correspondingly to this, shi;=8; can be real or purely imag-

inary, It is easily shown that the minors A and B, in accordance with the value of A4, are simultaneously
real or purely imaginary. Actually, the expressions for A and B can be transformed in the following manner:

A = 4808 [M{[(r + V 38) shycos§ + (5§ — ¥V 3y)sindchy] — (3.20)
— ey [(¥ + V38 sh2y + (6 — /31 sin 25]} +
4 shhy (72 4 82) (sh? v — sin?6)]

B = 240 [2A, (v* 4 8%) (chy-cos 6 — V/ 3shysind — ch}A,) + (3.21)

+ Y, shh {[2k2 + )y + V' 38(o — 253 sh 2y — [V 3y (o — 2k —
— 8 (¢ + 24?)] sin 26} — A, ch A, (2% 4 o) (ch? 1 — cos? §)}

where

y = Raly, 8 = Imh,

The factors with the expressions for A; and shyy are real; therefore, when Ay is real, the expressions
for A and B are real, while when }; is purely imaginary, they are purely imaginary, and their ratiois always
real, Thus, the results obtained in Sec. 2 with respect to the existence of the eigenvalue s=—iwis confirmed.

With large values of the parameter o in comparison with k2,
a=17ERa>k, Ra> it

the minors A and B have the following asymptotic expressions:

2 2
+ Vgchzz%-cosl{zl —i——;—-ch V 3asin V&-—--Vz—:ash V 3a cos 1/52) @.22)

A4 = 4800%'(—- sin V&+—%—sin21/<_i——sin Va o, V3 -+

B =24y ai[—2cosVa +0.5c0s2Va +0.5()3 sin Y ash ) 3z —
—chV3acos Vo) +2(ch0.5 V3xc0s0.5 V& — ¥ 3sh0.5 J'3a sin 0.5 Vo )]
For o>>1, the ratio B/A has the form
B Va cos(Va +e) —~ Vo cos(Va-tn/3) (3.23)

A 2 sin(Va—g) 2 sin(Va —n/3)
tge =V3 thyY3a=~)3 =tgn/3

1t follows from expressions (3.15) and (3.16) that instability arises in narrow regions of values of the
parameter g, in which cos (V o+ #/3) and sin (V'o¢—r/3) have identical signs:

an+a/6< Vo <mn-+mn/3 (3.24)

The regions of instability in the plane (g, k) at ¢ =1.2, calculated in a’digital computer using formulas
(3.15), (3.16), (3.20), and (3.21),are given in Figs. 1 and 2. Figure 1 corresponds to the case when the tem-
perature does not vary at the outer surface of the solid phase. Figure 2 corresponds to the case when the
heat flux at the outer surface of the solid phase is given, As is evident from the curves, the regions of in-
stability at k<1 are in good agreement with the asymptotic formula (3.24). With an increase in the value of
o, the regions of instability are broadened, while with an increase in the value of k they are narrowed, and
are drawn out to a line. In this case, it must be borne in mind that, as follows from the determination of
(3.14), the points k=0 and ¢ =0 on Figs. 1 and 2 correspond to a Rayleigh number Ra= ¢3/k?=w,

Figure 3 gives curves of neutral stability, corresponding to ¢y=0 in the plane (Ra,k). The critical val-
ues of the Rayleigh number Ra and k at a=1.2 are equal to: for case a) Ra=1558, k=2.95; for case b) Ra=
1424, k=2.65. The regions of instability on Fig. 3 are: for case a) region II; for case b) regions II and III.
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With an increase in the relative thickness of the layer of solid phase, the effect of the boundary condition at
the external surface is less strongly expressed, and the regions of instability in both cases a) and b) come
together. The critical values of the parameters are also found to be close. For example, witha=2 and =6,
Ra=1490, k=2.8. The analysis carried out shows that developing convection leads to an earlier appearance
of instability in a plane layer bounded by a crystallization surface, in comparison with a layer bounded by
solid fixed walls.
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